The measurement of three dimensional dose distribution of a ruthenium‐106 ophthalmological applicator using magnetic resonance imaging of BANG polymer gels1
نویسندگان
چکیده
The BANG (MGS Research Inc., Guilford, CT) polymer gel has been used as a dosimeter to determine the three-dimensional (3D) dose distribution of a ruthenium-106 (Ru-106) ophthalmologic applicator. An eye phantom made of the BANG gel was irradiated with the Ru-106 source for up to 1 h. The phantom and a set of calibration vials were scanned simultaneously in a GE 1.5 T MR imager using the Hahn spin-echo pulse sequence with a TR of 2000 ms and two TEs of 20 ms and 100 ms. The T(2) values were evaluated on a pixel-by-pixel basis using custom-built software on a DEC alpha workstation and converted to dose using calibration data. Depth doses and isodose lines of the Ru-106 eye-plaque were generated. It is concluded that the BANG gel dosimetry offers the potential for measuring the 3D dose distributions of an ophthalmologic applicator, with high spatial resolution and relatively good accuracy.
منابع مشابه
An investigation into the effect of magnetic resonance imaging (MRI) echo time spacing and number of echoes on the sensitivity and dose resolution of PAGATUG polymer-gel dosimeter
Background: There are various methods to read out responses of a polymer-gel dosimeter, among which the Magnetic Resonance Imaging (MRI) technique is the most common one. Optimizing imaging protocols can have significant effect on the sensitivity and the dose resolution of polymer gel dosimeters. This study has investigated the effects of the number of echoes (NOE) and the echo time spacing (ES...
متن کاملVerification of the PAGAT polymer gel dosimeter by photon beams using magnetic resonance imaging
Background: In this work investigation of the normoxic PAGAT polymer gel dosimeter such as sensitivity, the R2-dose response with post time and the percentage depth dose (PDD) of PAGAT polymer gel dosimeter have been undertaken. Materials and Methods: Using MRI, the formulation to give the maximum change in the transverse relaxation rate R2 was determined to be 4.5% N,N'-methylenbis- ...
متن کاملCalculation of total dose and dose equivalent distribution in the treatment of lung cancer using MR-guided carbon therapy
Nowadays, in order to improve the accuracy of treatment in radiation therapy, there are many attempts to use magnetic resonance imaging (MRI) due to the advantages of excellent soft tissue contrast and ultra-fast pulse sequences. On the other hand, carbon-ion radiation therapy is developing rapidly due to the benefits of greater relative biological effectiveness (RBE) and the application in the...
متن کاملFabrication of New 3D Phantom for the measurement of Geometric Distortion in Magnetic Resonance Imaging System
Introduction: Geometric distortion, an important parameter in neurology and oncology. The current study aimed to design and construct a new three-dimensional (3D) phantom using a 3D printer in order to measure geometric distortion and its 3D reproducibility. Material and Methods: In this study, a new phantom ...
متن کاملDevelopment of an Advanced Optical Coherence Tomography System for Radiation Dosimetry
Introduction: According to the literature, optical coherence tomography (OCT) can be used measure radiation absorbed dose. This study was carried out to design a computed tomography system for the calculation of absorbed dose and optimization of dose delivery in radiotherapy using gel dosimeters. Material and Methods: An advanced charge-coupled device based OCT system was developed in laborator...
متن کامل